Extensions 1→N→G→Q→1 with N=C23 and Q=C3.A4

Direct product G=N×Q with N=C23 and Q=C3.A4
dρLabelID
C23×C3.A472C2^3xC3.A4288,837

Semidirect products G=N:Q with N=C23 and Q=C3.A4
extensionφ:Q→Aut NdρLabelID
C231(C3.A4) = C24⋊C18φ: C3.A4/C3A4 ⊆ Aut C23366C2^3:1(C3.A4)288,73
C232(C3.A4) = 2+ 1+42C9φ: C3.A4/C3A4 ⊆ Aut C23724C2^3:2(C3.A4)288,351
C233(C3.A4) = C2×C24⋊C9φ: C3.A4/C2×C6C3 ⊆ Aut C2336C2^3:3(C3.A4)288,838

Non-split extensions G=N.Q with N=C23 and Q=C3.A4
extensionφ:Q→Aut NdρLabelID
C23.1(C3.A4) = C42⋊C18φ: C3.A4/C3A4 ⊆ Aut C23726C2^3.1(C3.A4)288,74
C23.2(C3.A4) = C422C18φ: C3.A4/C3A4 ⊆ Aut C23366C2^3.2(C3.A4)288,75
C23.3(C3.A4) = C2.(C42⋊C9)φ: C3.A4/C2×C6C3 ⊆ Aut C23366C2^3.3(C3.A4)288,3
C23.4(C3.A4) = C2×C42⋊C9φ: C3.A4/C2×C6C3 ⊆ Aut C23363C2^3.4(C3.A4)288,71
C23.5(C3.A4) = C22⋊(Q8⋊C9)φ: C3.A4/C2×C6C3 ⊆ Aut C23726C2^3.5(C3.A4)288,350
C23.6(C3.A4) = C22×Q8⋊C9central extension (φ=1)288C2^3.6(C3.A4)288,345

׿
×
𝔽